Open-hardware e-puck Linux extension board for experimental swarm robotics research
نویسندگان
چکیده
In this paper we describe the implementation of a Linux extension board for the e-puck educational mobile robot, designed to enhance the computation, memory and networking performance of the robot at very low cost. The extension board is based on a 32-bit ARM9 microprocessor and provides wireless network support. The ARM9 extension board runs in parallel with the dsPIC microprocessor on the e-puck motherboard with communication between the two via an SPI bus. The extension board is designed to handle computationally intensive image processing, wireless communication and high-level intelligent robot control algorithms, while the dsPIC handles low-level sensor interfacing, data processing and motor control. The extension board runs an embedded Linux operating system, along with a Debian-based port of the root file system stored in a Micro SD card. The extended e-puck robot platform requires minimal effort to integrate the well-known open-source robot control framework Player and, when placed within a TCP/IP networked infrastructure, provides a powerful and flexible platform for experimental swarm robotics research.
منابع مشابه
Open E-puck Range & Bearing miniaturized board for local communication in swarm robotics
We have designed and built a new open hardware/software board that lets miniaturized robots communicate and at the same time obtain the range and bearing of the source of emission. The open E-puck Range & Bearing board improves an existing infrared relative localization/communication software library (libIrcom) developed for the e-puck robot and based on its on-board infrared sensors. The board...
متن کاملCommunication in a Swarm of Miniature Robots: The e-Puck as an Educational Tool for Swarm Robotics
Swarm intelligence, and swarm robotics in particular, are reaching a point where leveraging the potential of communication within an artificial system promises to uncover newand varied directions for interesting research without compromising the key properties of swarmintelligent systems such as self-organization, scalability, and robustness. However, the physical constraints of using radios in...
متن کاملSelf-reconfigurable Modular e-pucks
We present the design of a new structural extension for the e-puck mobile robot. The extension may be used to transform what is a swarm robotics platform into a self-reconfigurable modular robotic system. As a proof of concept, we present an algorithm for controlling the collective locomotion of a group of e-pucks that are equipped with the extension. Our approach proves itself to be an effecti...
متن کاملA Two Teraflop Swarm
We introduce the Xpuck swarm, a research platform with an aggregate raw processing power in excess of two teraflops. The swarm uses 16 e-puck robots augmented with custom hardware that uses the substantial CPU and GPU processing power available from modern mobile system-on-chip devices. The augmented robots, called Xpucks, have at least an order of magnitude greater performance than previous sw...
متن کاملChidori – a bio-inspired cognitive architecture for collective robotics applications
A cognitive collaborative multi-agent control architecture that addresses real-world control problems for swarms of mobile robots is proposed. The swarm's emergent behaviour is obtained by using a distributed Particle Swarm Optimization inspired algorithm. A swarm-user interface is also presented and offers a way for a human operator to interact with and guide the robotic swarm without limiting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microprocessors and Microsystems - Embedded Hardware Design
دوره 35 شماره
صفحات -
تاریخ انتشار 2011